Need Help ?

Home / Expert Answers / Other / 1. What is data mining? In your answer, address the following: a) Is it another hype? b) Is it a s

1. What is data mining? In your answer, address the following: a) Is it another hype? b) Is it a s ...


1. What is data mining? In your answer, address the following: a) Is it another hype? b) Is it a simple transformation or application of technology developed from databases, statistics, machine learning, and pattern recognition? c) We have presented a view that data mining is the result of the evolution of database technology. Do you think that data mining is also the result of the evolution of machine learning research? Can you present such views based on the historical progress of this discipline? Do the same for the fields of statistics and pattern recognition. d) Describe the steps (1-2 lines each step) involved in data mining when viewed as a process of knowledge discovery. 2. How is a data warehouse different from a database? How are they similar? 3. Define each of the following data mining functionalities: characterization, discrimination, association and correlation analysis, classification, regression, clustering, and outlier analysis. Give examples of each data mining functionality, using a real-life database that you are familiar with. 4. Present an example where data mining is crucial to the success of a business. What data mining functionalities does this business need (e.g., think of the kinds of patterns that could be mined)? 5. Describe three challenges to data mining regarding data mining methodology and user interaction issues. 6. What are the major challenges of mining a huge amount of data (such as billions of tuples) in comparison with mining a small amount of data (such as a few hundred tuple data set)? 7. Briefly describe the following advanced database systems and applications: object-relational databases, spatial databases, text databases, multimedia databases, the World Wide Web. 8. Outliers are often discarded as noise. However, one person’s garbage could be another’s treasure. For example, exceptions in credit card transactions can help us detect the fraudulent use of credit cards. Using fraudulence detection as an example, provide three similar examples where outliers are important to detect.



Radioactive Tutors

Radio Active Tutors is a freelance academic writing assistance company. We provide our assistance to the numerous clients looking for a professional writing service.

NEED A CUSTOMIZE PAPER ON THE ABOVE DETAILS?
Order Now


OR

Get outline(Guide) for this assignment at only $10

Get Outline $10

**Outline takes 30 min - 2 hrs depending on the complexity and size of the task
Designed and developed by Brian Mubichi (mubix)
WhatsApp